Consevative Finite Element Scheme Using Divergence Form Convection Term.
نویسندگان
چکیده
منابع مشابه
Finite Element Methods for Convection Diffusion Equation
This paper deals with the finite element solution of the convection diffusion equation in one and two dimensions. Two main techniques are adopted and compared. The first one includes Petrov-Galerkin based on Lagrangian tensor product elements in conjunction with streamlined upwinding. The second approach represents Bubnov/Petrov-Galerkin schemes based on a new group of exponential elements. It ...
متن کاملA monotone finite element scheme for convection-diffusion equations
A simple technique is given in this paper for the construction and analysis of a class of finite element discretizations for convection-diffusion problems in any spatial dimension by properly averaging the PDE coefficients on element edges. The resulting finite element stiffness matrix is an M -matrix under some mild assumption for the underlying (generally unstructured) finite element grids. A...
متن کاملStable finite-element calculation of incompressible flows using the rotation form of convection
Conforming finite-element approximations are considered for the incompressible Navier– Stokes equations with nonlinear terms written in the convection or rotation forms. Implicit time integration results in nice stability properties of auxiliary problems which can be solved by efficient numerical algorithms. The original nonlinear system admits relatively simple stabilization strategies. The pa...
متن کاملFinite element approximation of convection diffusion problems using graded meshes
We consider the numerical approximation of a model convection–diffusion equation by standard bilinear finite elements. Using appropriately graded meshes we prove optimal order error estimates in the ε-weighted H 1-norm valid uniformly, up to a logarithmic factor, in the singular perturbation parameter. Finally, we present some numerical examples showing the good behavior of our method. © 2006 I...
متن کاملA positivity-preserving ALE finite element scheme for convection-diffusion equations in moving domains
A new high-resolution scheme is developed for convection–diffusion problems in domains with moving boundaries. A finite element approximation of the governing equation is designed within the framework of a conservative Arbitrary Lagrangian Eulerian (ALE) formulation. An implicit flux-corrected transport (FCT) algorithm is implemented to suppress spurious undershoots and overshoots appearing in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: TRANSACTIONS OF THE JAPAN SOCIETY OF MECHANICAL ENGINEERS Series B
سال: 2002
ISSN: 0387-5016,1884-8346
DOI: 10.1299/kikaib.68.317